ifeu – Institute for Energy and Environmental Research Heidelberg, Germany

Greenhouse gas balances of biofuels

Horst Fehrenbach and Dr. Guido Reinhardt

Sustainable Bioenergy – Challenges and Opportunities

Bonn, 12-13 October 2006

IFEU - Institute for Energy and Environmental Research Heidelberg, since 1978

- Independent scientific research institute
- organised as a private non profit company with currently about 40 employees
- Research / consulting on environmental aspects of
 - Energy (including Renewable Energy)
 - Transport
 - Waste Management
 - Life Cycle Analyses
 - Environmental Impact Assessment
 - Renewable Resources
 - Environmental Education

- Modelling emissions of road vehicles, trains, ships and airplanes
- Official database of the German Ministries for emission reporting

Life cycle analyses (LCA) and technology impact assessments since 1990:

• Biofuels (all biofuels, all applications)

TREMOD: Transport Emission Model

- Alternative transportation modes (Fuel cells, FFV, etc.)
- Renewable Energy
- Waste-to-Energy

IFEU - Institute for Energy and Environmental Research Heidelberg, since 1978

- **Our clients (on biofuel studies)**
 - World Bank
 - UNEP, GTZ etc.
 - European Commission
 - National and regional Ministries
 - Associations (national and international)
 - Local authorities
 - WWF, Greenpeace etc.
 - Companies (DaimlerChrysler, German Telekom, etc.)
 - Foundations (German Foundation on Environment, British Foundation on Transport etc.)

Environmental advantages and disadvantages:

- CO₂ neutral
- Save energetic resources
- Organic waste reduction
- Less transport
- etc.

- Land use
- Eutrophication of surface water
- Water pollution by pesticides
- Energy intensive production
- etc.

ISO 14040-43

Life cycle comparison

CO₂ Mitigation through Biofuels in the Transport Sector

- Status and Perspectives -

- Analysis of all LCAs world wide published on current and innovative biofuels for transportation.
- Analysis of literature regarding costs and potentials.
- Conclusions including necessities for research.

Download available from: www.ifeu.de

Analysis of all world-wide published LCAs about current and innovative biofuels for transportation

Procedure:

- Literature compilation world wide by involving external experts: more than 800 publications.
- Screening of the studies concerning state of the art data and fulfilment of ISO 14040/43 norms (Life cycle assessment).

Analysed biofuels for transportation

Biomethanol

Number

1

Number

Bioethanol				
_	Bioethanol from sugar cane	1		
—	Bioethanol from corn	7		
—	Bioethanol from wheat	9		
—	Bioethanol from sugar-beet	8		
—	Bioethanol from lignocellulose	8		
_	Bioethanol from potato	1		
—	Bioethanol from molasses	2		
ETBE				
_	ETBE from wheat	2		
_	ETBE aus sugar-beet	8		
—	ETBE from lignocellulose	2		
_	ETBE from potato	1		
	•	1		
Bic	odiesel	<u> </u>		
Bic	diesel Biodiesel from rapeseed	17		
Bic 	diesel Biodiesel from rapeseed Biodiesel from sunflower	17 7		
Bic 	diesel Biodiesel from rapeseed Biodiesel from sunflower Biodiesel from soybean	17 7 3		
Bic 	diesel Biodiesel from rapeseed Biodiesel from sunflower Biodiesel from soybean Biodiesel from Canola	17 7 3 2		
Bic 	bdiesel Biodiesel from rapeseed Biodiesel from sunflower Biodiesel from soybean Biodiesel from Canola Biodiesel from coconut oil	17 7 3 2 1		
Bic 	diesel Biodiesel from rapeseed Biodiesel from sunflower Biodiesel from soybean Biodiesel from Canola Biodiesel from coconut oil Biodiesel from recycled plant oil	17 7 3 2 1 1		
Bic 	bdiesel Biodiesel from rapeseed Biodiesel from sunflower Biodiesel from soybean Biodiesel from Canola Biodiesel from coconut oil Biodiesel from recycled plant oil Biodiesel from animal grease	17 7 3 2 1 1 1		
Bic 	bdiesel Biodiesel from rapeseed Biodiesel from sunflower Biodiesel from soybean Biodiesel from Canola Biodiesel from coconut oil Biodiesel from recycled plant oil Biodiesel from animal grease Biodiesel from used cooking oil	17 7 3 2 1 1 1 1		
Bio 	biodiesel from rapeseed Biodiesel from sunflower Biodiesel from soybean Biodiesel from Canola Biodiesel from coconut oil Biodiesel from recycled plant oil Biodiesel from animal grease Biodiesel from used cooking oil	17 7 3 2 1 1 1 1		

 Plant oil from sunflower

_	Biomethanol from lignocellulose	5		
МТВЕ				
—	MTBE from lignocellulose	1		
DME				
_	DME from lignocellulose	3		
BTL				
_	Sunfuels from lignocellulose	4		
Pyrolysis oil				
_	Pyrolysis oil from lignocellulose	0		
HTU Diesel				
_	HTU diesel from lignocellulose	0		
Biogas				
_	Biogas from org. residues	3		
Hydrogen				
_	GH2 from lignocellulose	5		
_	GH2 from org. residues	1		
	LH2 from lignocellulose	3		

Analyses regarding energy and CO₂ balances: 112

Result:

Not all LCA studies can be regarded to be representative: for this reason, deduction of bandwidths necessary

Greenhouse effect

Deduction of bandwidths

Deduction of bandwidths

CO₂ balance of biofuels

CO₂ savings in Germany

Cumulated savings of greenhouse gases through first generation biofuels in Germany

Source: IFEU 2006

Results: biofuels from residues

Results: biofuels versus biofuels

Germany: Sustainable biomass potentials 2010

Source: DLR / IFEU / WI 2005

Environmental assessment

- ➔ In general, biofuels save fossil energy and GHG compared to conventional energy supply. Exemptions exist and explanations can be given.
- Solid biofuels usually perform better than liquid biofuels from energy crops.
- ➔ Biogas options based on energy crops lie within the range of liquid and solid biofuels. Detailed analyses are necessary to determine their impacts. Some biogas options have quite a high potential to save GHG.

- Sustainable potentials
 - Because of competition for land and competition in the usage of biomass the potentials for energy crops are limited.
 - ➔ If energy crops are used for biofuels, biggest greenhouse gas savings are associated with high yield crops like SRF, sugar beet or wheat.
 - ➔ Lignocellulose has by far the biggest sustainable mass potential (energy crops and residues). This comes along with very effective greenhouse gas savings.

- Sustainable development
 - → There is a great potential to save GHG using biofuels for both, transportation and green energy / green heat.

But they should be developed in accordance with other goals towards a sustainable development including alternative use of biomass for industry and chemistry.

www.ifeu.de

Thank you for your attention

Dr. Guido Reinhardt Contact details:

guido.reinhardt@ifeu.de + 49- 6221- 4767- 0 / - 31

Horst Fehrenbach Contact details:

horst.fehrenbach@ifeu.de + 49 - 6221 - 4767 - 0 / - 16

Nils Rettenmaier